1,583 research outputs found

    Passive interferometric symmetries of multimode Gaussian pure states

    Get PDF
    As large-scale multimode Gaussian states begin to become accessible in the laboratory, their representation and analysis become a useful topic of research in their own right. The graphical calculus for Gaussian pure states provides powerful tools for their representation, while this work presents a useful tool for their analysis: passive interferometric (i.e., number-conserving) symmetries. Here we show that these symmetries of multimode Gaussian states simplify calculations in measurement-based quantum computing and provide constructive tools for engineering large-scale harmonic systems with specific physical properties, and we provide a general mathematical framework for deriving them. Such symmetries are generated by linear combinations of operators expressed in the Schwinger representation of U(2), called nullifiers because the Gaussian state in question is a zero eigenstate of them. This general framework is shown to have applications in the noise analysis of continuous-various cluster states and is expected to have additional applications in future work with large-scale multimode Gaussian states.Comment: v3: shorter, included additional applications, 11 pages, 7 figures. v2: minor content revisions, additional figures and explanation, 23 pages, 18 figures. v1: 22 pages, 16 figure

    Coexistence of glassy antiferromagnetism and giant magnetoresistance (GMR) in Fe/Cr multilayer structures

    Full text link
    Using temperature-dependent magnetoresistance and magnetization measurements on Fe/Cr multilayers that exhibit pronounced giant magnetoresistance (GMR), we have found evidence for the presence of a glassy antiferromagnetic (GAF) phase. This phase reflects the influence of interlayer exchange coupling (IEC) at low temperature (T < 140K) and is characterized by a field-independent glassy transition temperature, Tg, together with irreversible behavior having logarithmic time dependence below a "de Almeida and Thouless" (AT) critical field line. At room temperature, where the GMR effect is still robust, IEC plays only a minor role, and it is the random potential variations acting on the magnetic domains that are responsible for the antiparallel interlayer domain alignment.Comment: 5 pages, 4 figure

    High Multiplicity Scheduling with Switching Costs for few Products

    Full text link
    We study a variant of the single machine capacitated lot-sizing problem with sequence-dependent setup costs and product-dependent inventory costs. We are given a single machine and a set of products associated with a constant demand rate, maximum loading rate and holding costs per time unit. Switching production from one product to another incurs sequencing costs based on the two products. In this work, we show that by considering the high multiplicity setting and switching costs, even trivial cases of the corresponding "normal" counterparts become non-trivial in terms of size and complexity. We present solutions for one and two products.Comment: 10 pages (4 appendix), to be published in Operations Research Proceedings 201

    Reply

    Get PDF

    Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO3_{3}/SrTiO3_{3} interface

    Full text link
    We investigate the 2-dimensional Fermi surface of high-mobility LaAlO3_3/SrTiO3_3 interfaces using Shubnikov-de Haas oscillations. Our analysis of the oscillation pattern underscores the key role played by the Rashba spin-orbit interaction brought about by the breaking of inversion symmetry, as well as the dominant contribution of the heavy dxzd_{xz}/dyzd_{yz} orbitals on electrical transport. We furthermore bring into light the complex evolution of the oscillations with the carrier density, which is tuned by the field effect

    Tunable Rashba spin-orbit interaction at oxide interfaces

    Full text link
    The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system

    Helium condensation in aerogel: avalanches and disorder-induced phase transition

    Full text link
    We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of 4^4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure
    • 

    corecore